
   

METROLOGY AND MEASUREMENT SYSTEMS 
Index 330930, ISSN 0860-8229 

www.metrology.pg.gda.pl 

 
 
INSPECTION OF SPECULAR AND PARTIALLY SPECULAR SURFACES 
 
Stefan Werling1), Michael Mai1), Michael Heizmann2), Jürgen Beyerer1,2) 
 
1) Universität Karlsruhe, Institut für Anthropomatik, Lehrstuhl für Interaktive Echtzeitsysteme (IES), Adenauerring 4, D-76131 Karlsruhe, 
Germany (  werling@kit.edu, +49 721 608 5915, mai@kit.edu, beyerer@iitb.fraunhofer.de) 
2) Fraunhofer � Institut für Informations �  und Datenverarbeitung IITB, Fraunhoferstraße 1, D-76131 Karlsruhe, Germany 
(heizmann@iitb.fraunhofer.de) 
 

Abstract 

The inspection of specular surfaces differs significantly from the case of non-specular surfaces. In contrast to the 
non-specular case, the appearance of a specular surface is dominated by the reflections of the environment that
are visible in it. The transfer of this observation into automated visual inspection is called deflectometry. The 
main principle of deflectometric surface acquisition is to use a highly controllable environment, where a screen
on which a well-defined pattern is presented is observed via the specular reflecting surface. Knowing that 
pattern, it is possible to inspect the surface qualitatively and � at least with certain additional knowledge � to 
reconstruct the surface under test. In this paper, we introduce the theoretical background of deflectometry. After
presenting some properties of the deflectometric inspection itself, we describe the qualitative and quantitative
evaluation of the deflectometric observation in detail. We will show that an inspection of specular and partially
specular objects is feasible in an industrially applicable inspection system. For complexly formed and/or large
objects, we propose a robot-based inspection setup. 

Keywords: shape from Specular Reflection, deflectometry, specular surface, reconstruction, regularization, robot 
based inspection. 
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1. Introduction 
 

Let us consider our knowledge about object surfaces from a technical and visual 
perspective. There are two aspects we can distinguish: the reflectance and the shape. 

Once the bidirectional reflectance distribution function (BRDF) for every point of the 
surface is known, all information about the reflectance properties of the surface is available 
[1]. The BRDF as a function of the geometric arrangements of the illumination and the 
observation relative to the surface normal describes how bright the surface will appear in 
proportion to a given irradiance. Many types of automated visual inspection methods for 
industrial surfaces use the knowledge of the BRDF implicitly. The evaluation of spectral 
properties of the surface, which determine its visible color, can be interpreted as a special case 
of the application of the BRDF, which then comprises the wavelength as an additional 
argument. 

Other surface properties that can be evaluated are geometric properties, which ultimately 
describe the object shape. Knowledge about this aspect is usually represented through an 
object model. The simplest form of such a model is a 3D point cloud, which is usually the raw 
data obtained directly through a measurement process that supplies the position of 
measurement points. The problem of finding a more appropriate model for given raw data is 
one of the fundamental problems for the reconstruction of 3D objects in computer graphics [2, 
3]. In the context of industrial automated visual inspection systems, we can stress at least two 
inspection tasks considering object shape-first: how well fits the global geometry of the object 
under test fits into its designed shape, and second: is there a local object deformation. 



How do these aspects appear in the context of the present inspection task, the inspection of 
specular and complex surfaces? The at least partially specular nature of the objects under test 
implies the validity of the law of geometric optic reflection. This knowledge is the only 
precondition we will take into account. Hence, for specular surfaces, the BRDF is well 
known. For partially specular surfaces, it is possible to model the reflection through a specular 
and a diffuse component. For many types of practically relevant surfaces, it is sufficient for  
automated visual inspection to employ the well known Phong shading model, which assumes 
a perfectly diffuse reflection component and a specular component that decays polynomially 
from the ideal specular direction [4]. In either case, it is assumed that it is possible to 
determine the direction of the specular reflection. 

For the surface reconstruction problem, we will assume that the reflectance properties of 
the objects under test are known and focus on the determination of the object shape. The main 
challenge in the field of automated visual inspection of specular surfaces can be stated as 
follows: how can we gather information about a surface only by assuming its specular 
property? In the field of computer graphics, this problem is known as shape from specular 
reflection or shape from specularities, whereas in the metrology community the terms 
deflectometry and reflection grating method are more prevalent. Early work in the field of 
estimating surface deviations using lighting reflection techniques were done by Kafri and 
Livnat [5], Ikeuchi [6], and Ritter and Hahn [7]. Ikeuchi and later Sanderson et al. [8] used 
the basic deflectometric principle, which can be described as follows: a presumably distorted 
(deflected) image of a well known and calibrated scene or light source is captured with an 
image acquisition device such that the light path includes the unknown specular surface. 
Knowing the intrinsic and extrinsic parameters of the camera, the light source and the image 
acquisition constellation, it is possible to obtain normals of the unknown surface. The 
mapping from sight ray to scene point � the deflectometric measurement � is usually done 
by a definite coding of the scene positions. It is well known that the surface reconstruction 
problem for such a simple setup is mathematically ill-posed. 
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Fig. 1. General geometric setup for deflectometric inspection. 
 
For a deeper understanding of the mathematical background of the deflectometric 

regularization problem, we refer the reader to the work of Balzer [9]. 
This contribution is organized as follows: in Section 2, we give a short introduction into 

the geometric setup of deflectometric image acquisition. Section 3 highlights important 
properties of the deflectometric optical path that determine a sensible inspection setup. The 
evaluation of deflectometric observations is the topic of Section 4. Section 5 describes a 
compact sensor as a part of a robot based inspection system for the inspection of large 
industrial parts. 
 
 
 



2. Foundations of Deflectometry 
 

The general geometric setup is depicted in Fig. 1. We employ a central perspective camera 
model with projection center C and camera coordinates (u, v) lying in a projective plane. A 
pattern sequence presented on a pattern generator, e.g. a liquid crystal display, constitutes the 
light source L. The pattern sequence is a realization of a spatial coding � e.g. phase shifting 
or Gray code � that is needed to identify each pixel on the pattern generator. The origin and 
the orientation of the display coordinate system relative to the camera system are known due 
to a calibration process. Deflectometric measurement means then recording the assigned 
display position l (u, v)  for each camera pixel (u, v). 

 

3. Properties of the Deflectometric Inspection 
 

In comparison to other optical inspection principles, deflectometry shows a significantly 
different dependence on specific imaging parameters. These relations can be used to vary the 
sensitivity of a deflectometric setup in order to find an optimal sensor configuration for a 
given inspection task. There are two major parameters whose effects differ significantly from 
other optical inspection principles, e.g. projection methods:  
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Fig. 2. Angular resolution. 
 
First, the distance of the pattern generator to the surface determines the sensitivity to 

inclination changes in the surface (i.e. the angular resolution), the range of determinable 
inclinations and the measuring field on the surface. The relation between the sensitivity to 
inclinations /∂ ∂u ϕ  and the distance d (see Fig. 2) can be approximated by the 
proportionality:  

 ∂
∝

∂
u d
ϕ

. 
 
Thus, in theory, any given angular resolution is obtainable by moving a pattern generator 

with fixed pixel spacing sufficiently far away from the surface. However, by doing so, the 
range of determinable inclinations ( )R ϕ  is reduced by ( ) 1/∝R dϕ  since the pattern 
generator covers a smaller angle that is visible from a certain surface point S. In addition, if a 
flat surface is considered, the measuring field on the surface MF becomes also reduced by 

1/∝MF d  In consequence, given a certain pattern generator, there exists always a tradeoff 
between (1) the angular resolution and (2) the range of determinable inclinations and the 
measuring field. If a large range of determinable inclinations is mandatory, the use of a 



spherical pattern generator, e.g. by projecting a pattern on a spherical screen, is a possible 
solution [10]. A high angular resolution together with a large measuring field is obtainable by 
dividing the surface of interest into several measuring fields which can be inspected 
individually. Such an approach can be realized by means of a deflectometric sensing head 
consisting of a pattern generator and one or several cameras, which is mounted on an 
industrial robot, see Section 5. 

A second degree of freedom in the deflectometric image acquisition is the focus 
adjustment of the camera lens. Whereas for most other optical measuring principles, focusing 
mainly influences the lateral resolution on the surface, focusing in the deflectometric 
inspection additionally influences the angular resolution. In this context, two particular focus 
settings can be identified: 

 
a)                                                                                b) 

 

pattern 
generator 

camera

surf ace

pattern
generator

camera

surf ace 

 
Fig. 3. Focus settings: a) focusing on the surface, b) focusing on the pattern generator. 

 
When the camera focuses on the surface, optimal lateral resolution on the surface can be 

obtained, see Fig. 3a. If a flat surface in the vicinity of the actual inspection point S is 
considered, the aperture angle of the camera ω effects that the observed intensity at S is 
obtained by integrating the visible radiance over γ with γ =ω, which leads to a blurred 
imaging of the pattern generator. In a system theoretic point of view, the blurring can be 
approximated by the substitution of the originally displayed pattern l(u) for the convolution 

( ) ( ) ( )= ∗bl u l u b u  with b(u) = (δu), where δu  is the size of the area that is visible on the 
pattern generator due to the integration over γ. In consequence, if the surface is to be focused 
to obtain the optimal lateral resolution, a coding with low-frequency patterns has to be chosen 
that is insensitive to blurring. Such patterns are e.g. sinus patterns that are commonly used for 
phase shifting methods. Other codings such as Gray codes have high frequency components 
which are deteriorated by the blurring. 

When the camera is focused on the pattern generator, the pattern on the screen can be 
identified without blurring, such that the angular resolution becomes optimal, see Fig. 3b. 
However, the aperture angle of the camera ω causes the integration of the reflected light over 
the area sδ on the surface, leading to a reduced lateral resolution. The curvature of the surface 
acts as an additional optical component in the deflectometric optical path. Hence, a necessary 
precondition focusing between the surface and the pattern generator. The suitable focus 
setting has to be chosen such that an optimum between high lateral resolution on the one hand 
and high angular resolution on the other for perfect focusing on a flat screen in the entire 
camera image is that the curvature of the surface is constant over the visible area. Since real 
surfaces often satisfy this condition only in small regions and certainly not in defective areas, 
a focus setting leading to an overall focused imaging of the pattern generator does generally 



not exist. An optimal focus setting can be obtained e.g. by raytracing, when the pattern 
generator is fitted into a set of simulated points leading to a focused imaging for many surface 
points [10]. 

A good compromise for the focus setting can be obtained by hand is reached. The effects 
of different focus settings can be reduced by stopping down the camera optics, leading to a 
reduction of the aperture D and in consequence of the angles ω and γ. 

 
4. Evaluation of Deflectometric Observations 
 

Deflectometric observations can be evaluated in different ways, the choice of which 
depends on the purpose of the surface inspection. A common approach is to extract local 
features from the patterns observed in the specular surface [11]. This approach offers the 
advantage of a fast inspection and will be presented in Section 4.1. 

A second approach is to reconstruct the surface from the deflectometric observations such 
that the geometry of the surface is quantitatively accessible, see Section 4.4. However, it is 
well known that the quantitative reconstruction requires additional information on the surface. 
Once such additional information is available, the major drawback of this approach is its 
computational expense. 

 
4.1. Pattern Recognition for the Evaluation of Deflectometric Observations 
 

Suitable features are the basis for methods of pattern recognition. In case that the 
geometric properties of the surface are of interest, the analysis is best performed directly on 
geometric data. Normal fields that will be introduced in Section 4.4 are predestinated as 
features for this task. 

Deflectometric observations can also be applied for the analysis of reflectance properties of 
partially specular surfaces. For this task, the total reflected radiance can be taken as a feature. 
If a suitable code sequence is displayed on the pattern generator, the summarized Gray values 
over the image series at a certain image point represent an adequate realization. In case that 
the color of the surface is of interest, the color in the received images of a partially specular 
surface depends on the surface reflection and in addition on the body reflection [12]. Only the 
body reflection affects a possible color shift and can be used e.g. for characterizing the 
material of the surface. 

Some tasks require the combination of the evaluation result with additional information. 
The consideration of “customer acceptance” is a kind of additional information. As an 
example, the perceptibility � the visibility according to physical and physiological limits � 
and the relevance may come into play. For surfaces which have to be inspected for aesthetical 
defects, the question is important whether a defect is located at a position where the customer 
imposes aesthetical requirements or not [13]. However, the quantitative assessment of the 
relevance of aesthetical defects is still an open problem. In case of technical surfaces, the 
location of a possible functional defect is important in a similar way. 

 
4.2. Analysis of Homogeneity 
 

A possible way of analyzing deflectometric features is to consider their homogeneity. For 
many practically important surfaces, geometric or reflectance features at a certain surface 
point must not significantly differ from its surrounding area. Another approach is to check the 
features against a predefined sample. 

To evaluate the homogeneity of features, many techniques have been developed in 
different scientific fields. As examples, the following methods exploit different concepts:  



− Auto-regressive models (ARMs): ARMs base on the prediction of the feature value at a 
certain image point by a linear combination of the values in a neighboring area [14, 15]. 
They perform an optimal linear prediction in a least-squares sense based on a statistical 
analysis in a learning region. The obtained parameters of the ARM can be interpreted as 
texture features for the learning region. If an inhomogeneity is present, the prediction error 
rises significantly and can be used to detect inhomogeneities. Benefits of ARMs are their 
well-founded theory and the computational simplicity in comparison to other methods. 

− Local binary patterns (LBPs): LBPs perform a direct comparison of the feature values 
at neighboring image points [16]. They exploit the idea that the sign of feature differences 
in several directions contains enough information to assess homogeneity. Due to this 
simple assumption, LBPs are easily parameterized, fast and surprisingly successful. 

− Co-occurrence matrices: They determine local feature similarity through the statistical 
evaluation of feature values at certain displacements within small neighboring areas. A 
subsequent analysis of the resulting second-order statistics e.g. by means of the Haralick-
features extracts texture descriptors that can be used to assess homogeneity [17].  
For each class of methods, reference feature vectors must be predefined. After the 

deflectometric image data has been processed, the concept of feature distance must be applied 
in order to decide whether the measured features are close enough to the reference feature 
vector � i.e., homogeneity is assumed � or not. The definition of a feature distance must 
ensure that it allows for tolerable variations in the image acquisition, e.g. illumination 
conditions that may vary between the recording of the sample and the actual surface to be 
inspected. It depends on the application whether the distance should base on the Euclidean or 
any other metric. 

A commonly used non-Euclidean metric is the radial base function (RBF) metric. It 
assumes that the feature vectors that are closer to the vector of interest should have a greater 
influence than more distant ones. In this way, it is possible to adjust how important local 
clusters of feature values are. RBF metrics are often used in support vector machines as RBF 
Kernels. 

Even very customized metrics can be used. As an example, the closest feature values 
together with the most distant ones could be ignored, while the ones in between are 
considered. This behavior would be comparable to a band-pass filter that only includes certain 
parts of the spectrum. 

 
4.3. Pattern Recognition for Geometric Features 
 

As mentioned above, normal fields (see Section 4.4) which constitute the immediate result 
of a deflectometric inspection are suitable as natural geometric features for pattern 
recognition. If necessary, even a quantitative reconstruction of the geometry of the surface can 
be sensible as the basis for the pattern recognition. However, this approach implies a high 
complexity and high computational costs. Nevertheless, the reconstruction is the most 
meaningful representation of a 3D surface. 

To circumvent the problem of reconstruction, a possible solution could be to use a coarse 
model assumption of all normal vectors and to use an approximated inclination and the 
resulting curvature as geometric features. 

If we are only interested in the local topological or geometric differentials � which are 
sufficient for many pattern matching tasks � it is suitable to work on normal fields or their 
derivatives (e.g. the relative inclination and the curvature) themselves. For this comparison, 
the reference pattern has to be transformed into a field of relative inclination curvature. The 
resulting matching is then done with rotation-invariant techniques such as spin images [18]. 
 



4.4. The Deflectometric Reconstruction Problem 
 

Because of the precondition that the reflection law holds for each surface point, the 
following relation between the sight ray s to the surface S, the reflected ray r, and the local 
surface normal n holds (vectors of unit length are marked by an additional hat, i.e. ˆ 1=x ):  

 ˆ ˆ= − = −s rn s r
s r .  (1) 

 

From this equation follows with = −r l s (see Fig. 1) the relation between possible surface 
normals mn  due to the measurement and the measurement l(u) itself, with 2∈ ⊂Uu  for all 

∈ Ωx  with 3{ ( ) }Ω = ∈ ∧ ⊆ Ux | x P x : 
 

 m
( ( ))ˆ( ) : ( , ( ( ))
( ( ))

−
= − − = − =

−
l P x xxn x x l x m x l P x

x l P x x .  (2) 

 
Here 3 2: →P  denotes the projection T

1 3 2 3( ) : ( / , / )= x x x xP x , T
1 2 3( , , )= x x xx . 

Note that for all ∈ Sx  and undisturbed measurement,  
 

 mˆ( ) ( )=n x n x   (3) 
 

must hold. For all ∈ Ω − Sx , mˆ ( )n x  is a possible surface normal to a hypothetical surface S  
in the sense that S  would lead to the same deflectometric measurement l(u)  as S. 

We can summarize: the deflectometric measurement establishes a normal field mˆ ( )n x  so 
that the deflectometric reconstruction problem reads as: find the very surface which fits into 
this measured normal field. 

 
4.5. The Reconstruction Problem for Parameterized Surfaces 
 

The surface S can be described in local camera coordinates as the graph of a function f 
using the following parametrization:  

 T

2 2

1ˆ{( , , ) | ( , )},
( ) ( ) 1 1

−∂ 
 = = = −∂ ∂ + ∂ +  
 

x

y

x y

f
S x y z z f x y f

f f
n .  (4) 

 
For each surface point Eq. (3) must hold. This leads to the following nonlinear 

deflectometric PDE:  

 m,1 m,3 1

m,2 m,3 2

ˆ ˆ/ ( , , ( , ))
( , ) : ( , , )

ˆ ˆ/ ( , , ( , ))
   

−∇ = = =   
  

n n q x y f x y
f x y x y f

n n q x y f x y
q .  (5) 

 
Many deflectometric reconstruction approaches use a linear variant of this equation, see 

e. g. Massig [19], which implicitly implies some regularization process selecting the correct 
normals sn̂  to the real surface out of the normal field mn̂  (cf. Section 4.7):  

 

 T 2 3
s s 0 0 m 0 0ˆ ˆ ˆ( , ) , , ( , ) { ( , , ) | , }→ ∈ = =x y x y x y z x x y yn n n .  (6) 

 
With the surface representation of Eq. (4), this mapping yields the linear variant of 

problem (5):  



 ˆ( , ) ( , )−∇ =f x y x yq .  (7) 
 

Hereby we have to point out that first selecting the normals sn̂  is not sufficient to 
reconstruct the unknown surface, since we need initial and/or border values to solve the 
reconstruction problem [20], and that second the normal field is not necessarily curl free, 
which implies that a potential f might not exist and only an approximative solution can be 
achieved. 

Many approaches exist in literature for normal field integration, directly or implicitly using 
Eq. (7), e. g. Frankot and Chellappa [21] have shown that a surface projection onto an 
integrable subspace can be reconstructed by applying Fourier transform techniques. This 
solves the problem of possible non-integrable normal fields, but introduces the problem of the 
inherently periodical surface continuation due to the Fourier transform. Terzopoulos [22] uses 
a variational approach to the reconstruction problem by minimizing an energy functional 
containing terms for position and normal deviation. Karaçali and Snyder [23, 24] describe an 
adaptive surface reconstruction method from a normal field that allows discontinuities in the 
solution and a gradient space technique for noise reduction of disturbed normal fields. 
Kickingereder and Donner [25] introduce a method for the simultaneous normal selection and 
integration procedure based on a stereo approach and applying B-splines as surface model. 
Ettl et al. [26, 27] use a fitting method using B-splines for approximating the derivatives of 
the surface shape and radial basis functions (RBF) for the deflectometric surface 
approximation problem. 

Another solution approach for the reconstruction problem is opened by looking at the norm 
of ∇f , which leads directly from Eq. (7) to the following eikonal equation:  

 

 2 2
1 2( , )∇ = +f x y q q ,  (8) 

 

which can be solved by applying the Fast Marching Method, cf. Ho et al. [28]. 
Kovesi [29] uses a wavelet approach (applying so-called shapelets) for the shape recovery 

problem, which can even deal with an ambiguity in the measured surface tilt of π. 
Furthermore it is possible to directly utilize the nonlinear problem (5), which can be 

transformed into a scalar PDE by applying the divergence operator:  
 

 ( , ) div ( , , )−∆ =f x y x y fq .  (9) 
 

From the theory of partial differential equations it is well known that a variational 
formulation for this problem exists [30], which allows weak solutions. 

In the following, we will emphasize on the reconstruction problem using implicit surface 
models. 

 
4.6. The Reconstruction Problem for Implicit Surfaces 
 

This chapter is substantially based on the work of Balzer [9]. 
Balzer has shown that the solution space of the deflectometric reconstruction problem is a 

one-dimensional manifold. As mentioned before, this means that there exists an infinite 
number of hypothetical surfaces cS  which could have lead to the same deflectometric 
measurement. These surfaces can be modeled by a family of level sets of an implicit surface 
representation:  
 3{ | ( ) , , }, ( ) ( ),= = ∈ Ω ⊂ ∈ Ξ ⊂ = ∇ Ω =∪c c

c

S c c Sϕ ϕx x x n x x .  (10) 



This means that we are looking for a level set function ϕ which simultaneously describes 
all solutions of the reconstruction problem in the volume Ω . Therefore, the normal adaption 
condition (3) must hold for any point ∈ Ωx , which means that the normal directions to the 
level sets must fit the normal directions induced by the measurement (note that the 
deflectometric measurement yields only information about normal directions): 
  

 mˆ∇ =
∇

ϕ
ϕ

n .  (11) 

 
Allowing slightly disturbed measurements to reduce this rigid condition, a variational 

approach is convenient:  

 
2

m
1 ˆ[ ] : min
2

Ω

∇= − →
∇∫J dϕϕ

ϕ
n x .  (12) 

 
Clearly, for an undisturbed measurement, this energy functional will reach zero as its 

minimum. To eliminate the norm term ∇ϕ , an implicit, soft constraint 1∇ =ϕ  can be 
introduced, leading to the following minimization problem: 

 

 
2

m
1 ˆ[ ] : min
2

Ω

= ∇ − →∫E dϕ ϕ n x .  (13) 

 

A necessary condition for a minimum of [ ]E ϕ  is: 
 

 0[ ] 0=
∂ =

∂
E ε εϕ

ε ,  (14) 
 

denoting the variation of ϕ  as = +εϕ ϕ εη  with ∈ε  and 2 3
0 ( )∈Cη . Inserting this 

variation in Eq. (13) and applying the condition of Eq. (14) yields: 
 

 2
m

0 0

1 ˆ[ ] ( )
2= =Ω

= ∇ + −∫d dE d
d dε

ε ε
ϕ ϕ εη

ε ε
n x .  (15) 

 
Execution of the derivation and using partial integration and Gauss’ theorem leads to:  
 

 m mˆ ˆ ˆ, div( ) 0
∂Ω Ω

∇ − − ∇ − =∫ ∫d dϕ η ϕ ηn o x n x   (16) 

 

with ô  denoting the outer normal to ∂Ω . From the second summand, the Euler-Lagrange 
equation follows for the deflectometric reconstruction problem:  

 

 mˆdiv ∆ =ϕ n ,  (17) 
 

whereas the first summand leads to a Neumann problem with natural boundary condition: 
 

 mˆ ˆ ˆ, ,∇ =ϕ o n o   (18) 
 

on ∂Ω . Solving this linear problem yields an approximative reconstruction for all possible 
surfaces in Ω . The natural boundary conditions can easily be fulfilled, because the normal 
directions on the boundary are known by measurement. To select the real surface out of the 
solution manifold, that is selecting a level of ϕ, additional information is needed (note that 
with ( ) 0=ϕ x , also ( ) 0,+ = ∈k kϕ x  is a solution of Eqs. (17), (18)). 
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Fig. 4. Example of a normal field a) and some reconstructed surfaces b) all solving the problem of Eq. (17). 

 
4.7. Regularization 
 

From each formulation of the deflectometric problem (Eqs. (5), (7), (8), and (17)) follows 
that initial and/or boundary values must be given to solve the particular system of differential 
equations. In other words: with a given setup consisting of a camera and a pattern generator, it 
is impossible to solve the reconstruction problem without additional information. The 
situation is visualized in the example of Fig. 4, where an infinite number of surfaces fit into 
the measured normal field. Consequently, the problem has to be regularized. 

There are a number of regularization methods proposed in literature for the deflectometric 
reconstruction problem:  
− A priori model knowledge: Knowing the underlying surface model of the object under 

test, it is possible to estimate the unknown model parameters. The reconstruction problem 
becomes a problem of parameter estimation [31]. The evaluation of the local connectivity 
of the images of known scene curves delivers a set of equations for the local surface 
reconstruction. Our experiments have shown that, generally speaking, the fitting of a 
known surface to a normal field is numerically ill-conditioned. 

− Optical Flow: With an infinitesimal translation of the surface, the correspondence 
problem of mapping the sight ray to a surface point is manageable. Evaluating the optical 
flow delivers the necessary additional information for the reconstruction problem. 
Zisserman et al. [32] brought up the idea of using observer movement to gather 
information about specular surfaces. Roth and Black [33] introduced optical flow resulting 
from known displacement fields in the specular surface reconstruction process. Their 
approximative model was enhanced by Lellmann et al. [34] where a set of closed-form 
analytical equations was derived. 

− Polarisation: This approach is based on a priori knowledge about the angular dependency 
of the polarization state on the directions of the illumination and the observation for a 
given surface. That way, it is possible to gather information about surface normals by 
evaluating a polarization series. This information can be applied in the regularization 
process. A polarization-based technique for calculating normals for specular surfaces was 
introduced by Rahmann and Canterakis [35]. A reconstruction technique for diffusely 
reflecting surfaces was proposed by Wolff [36]. Atkinson [37] gives a good survey of the 
connection between surface shape and polarization.  



          a)                                                         b) 
 

 
Fig. 5. Disparity of normal fields from a stereo approach: a) normal fields for two measurement patches in 2D,  

b) measurement disparity field for five overlapping measurements volumes with color coded disparity d(x). 
 

− (Multi) Stereo: Stereo methods for specular surface reconstruction could be considered as 
the traditional approach. The idea of using multiple views to gather information about 
surfaces and their normals has been adopted early by Ikeuchi [6]. Later on, Wang and 
Inokuschi [38], Bonfort et al. [39], Knauer et al. [40], Kickingereder and Donner [25] and 
Petz and Tutsch [41], among others, picked up this approach successfully. 

A deflectometric measurement with a single camera setup yields a normal field 1
mn̂  in 

the considered measuring volume, cf. Eq. (2). For a different camera view, a second 
measurement with associated normal field 2

mn̂  is obtained. Points in space for which the 
attached normals match closely are possible surface points. In this case the disparity of the 
normals is minimal. A simple disparity measure is the length of the difference vector 

1 2
m mˆ ˆ( ) ( ) ( )= −d x n x n x  of the unit normals. A more elaborate measure was introduced by 

Bonfort and Sturm [39] especially for multi stereo approaches. 
Fig. 5 illustrates this idea. The left figures shows two overlapping normal fields in a 2D 

view. Points where both normals have the same direction indicate the real surface which 
has generated the normal fields. The right figure shows the disparity field ( )d x  for five 
overlapping measurement volumes obtained with a deflectometric sensor head at different 
positions. The area with nearly zero disparity indicates real surface points. An algorithm 
for the determination of regularization values from such a monocular stereo setup has been 
presented by the authors [20]. Estimating surface normals only in boundary regions by 
monocular stereo, allows surface reconstruction by solving a boundary value problem.  

Stereo methods cannot be used only for the estimation of initial values, but also for the 
estimation of normal fields and/or surface points (cf. Eq. (6)). 

Although stereo approaches are commonly used, a serious drawback has to be 
mentioned: for general surfaces, the determination of the minimal disparity and therefore 
of surface points and normals is difficult and ambiguous [42], this holds especially for 
surfaces with concavities. 

− Shape From Shading (SFS): The SFS problem is, with respect to some important 
properties, analogous to the deflectometric reconstruction. Both, SFS and Shape From 
Specular Reflection, yield information about surface normals. Therefore, it is possible to 
gather the necessary additional information by illuminating a partially specular surface 



with directional light and by evaluating its diffuse reflection with SFS [43]. It is obvious 
that this regularization method works only for partially specular surfaces. 

   
        a)                                                                           b) 
 

 
 

Fig. 6. Sensitivity of deflectometric a) and triangulation based methods b). 
 

− (Laser) Triangulation: This is another regularization method which is like the SFS 
approach only applicable for partially specular surfaces. Due to the fact that the solution 
space of the deflectometric problem is one-dimensional, the additional estimation of the 
position of only one surface point is sufficient for solving the reconstruction problem. 
With triangulation based methods, it is possible to determine such a point with high 
accuracy. Furthermore, these methods are complementary to deflectometry in the sense of 
delivering zero-order surface information � the positions of points themselves � instead 
of first-order information � i.e. the inclination � in the deflectometric case, see Fig. 6. In 
the case of deflectometry (Fig. 6a), a local inclination change yields a different 
measurement ( , )∆ u vl  for a fixed sight ray, whereas in the triangulation case (Fig. 6b), a 
local change of the surface height leads to a different sight ray ∆u , which is directly 
proportional to height changes. 

If the object under test is partially specular, we would strongly recommend this 
approach because of its robustness and the uniqueness of its result.  

 

 
 

Fig. 7. Reconstruction of ceramic glaze defects at dishes. 
 
 
 



12. Surface Reconstruction 
 

For the industrially relevant tasks � reconstructing the global shape of a specular object 
and detecting local deformations � we use a formulation of the deflectometric problem in the 
form of differential equations, cf. Eq. (5), (7), and (17). In the following, we will present 
some aspects of using the Poisson equation Eq. (17) and natural boundary values Eq. (18). 
The first detail to recapitulate is the three-dimensionality of the problem formulation. The 
one-dimensional solution manifold is obtained simultaneously. Selecting a solution in this 
case means to regularize the problem, which is done either by monocular stereo � several 
positions of a deflectometric sensor head, see Section 5 � or by laser triangulation as 
described above. An example for a deflectometric surface reconstruction is depicted in Fig. 7, 
where small defects on the glaze of the dish are clearly detectable. An important advantage of 
having multiple solutions in overlapping volumes at hand is the possibility to fuse 
neighboring surface patches, see Fig. 8. In the context of a robot-based inspection system, this 
allows for the reconstruction of complexly shaped specular objects, which commonly requires 
deflectometric measurements from several different directions. 
 

                  a)                                                                            b) 
 

 
Fig. 8. Reconstruction and fusion of two overlapping surface patches: a) reconstruction on the basis of 

undisturbed normal fields, b) reconstruction on the basis of normal fields that are heavily disturbed with equally 
disturbed random changes of normal directions in the range of 20°. 

 
For the numerical solution of the Poisson equation, we employ finite element methods 

(FEM). Thereby, the Galerkin projection is used, which leads to an implicit smoothing of the 
solution and results in  high robustness regarding normal field distortions. Another advantage 
of FEM is the possibility to automatically generate locally refined meshes, either for the 
reconstruction of local shape variations or for speeding up calculations by using adaptive 
mesh refinements, see Fig. 9. 

 
                          a)                                                                             b) 

 

 
Fig. 9. Adaptive surface reconstruction with finite element methods: a) final reconstruction, b) adaptive mesh 

refinements on a slice parallel to the xz-plane. 



 
13. Experimental Setup 
 

In cooperation of the Fraunhofer Institute for Information and Data Processing IITB and 
the Chair of Interactive Real-Time Systems of the Universität Karlsruhe, a sensor head has 
been developed consisting of an LC display acting as pattern generator and one or two 
cameras, see Fig. 10b. The compact design ensures that a rigid sensor head is obtained that 
maintains its geometric calibration over a longer period. To reduce the need of transferring a 
large amount of data � image data for the pattern generator and recorded images from the 
cameras � which would induce the need for precautionary measures regarding EMC 
(electromagnetic compatibility), a computer has been included in the sensor head which 
controls and synchronizes the pattern generation and the image acquisition. In addition, this 
computer performs preprocessing of the image data and decodes the image sequence. That 
way, only few data have to be transferred from this computer, keeping the required bandwidth 
from and to the sensor head tolerable. 

The sensor head is mounted on an industrial robot which provides a six dimensional 
positioning of the sensor head, see Fig. 10a. The high stiffness of the industrial robot together 
with the used coding based on phase shifting ensures that no relevant vibrations of the sensor 
head occur. 

 
     a)                                                                        b) 
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Fig. 10. Experimental setup: a) general view, b) sensor head. 

 
In order to inspect the surface of large objects like e.g. car bodies, the surface is divided 

into regions which can be inspected individually from a single position of the sensor head. At 
each predefined position of the sensor head, an image series depicting the reflection of the 
code sequence on the pattern generator is taken and processed. 

In addition to a full coverage of the surface to be inspected, the division of the surface into 
smaller overlapping regions offers the possibility to regularize the deflectometric 
reconstruction problem by means of a stereo approach in the overlapping areas, see 
Section 4.7. In order to use other regularization methods for a quantitative surface 
reconstruction, a second industrial robot is available that can be used for positioning e.g. 
another camera or an additional (laser) light source. 
 
14. Conclusions 
 

In this contribution, deflectometry has been introduced as a promising inspection principle 
for the industrial inspection of specular and partially specular surfaces. The opportunity to 



evaluate deflectometric observations in order to generate a quantitative reconstruction 
together with the alternative of assessing geometric features offers the possibility to tailored 
inspection systems. However, deflectometry still imposes challenges in the practical 
application of the mathematical theory and is still a developing area in metrology. We have 
shown that by using industrial robots, a highly flexible deflectometric inspection setup is 
established which can be applied to a broad variety of surfaces. Further areas of 
improvements lie especially in the area of customized illumination and imaging setups for 
specialized production. 
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